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Polaron ground state in a double heterostructure of 
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NY 14260,USA 

Received 28 September 1990 

Abstract. The ground-state energy and effective mass of a polaron in the GaAs well of 
a GaAs/AIAs double heterostructure are calculated as functions of the well width. In 
considering electron-phonon interactions, we have included both the confined longitudinal 
optical (LO) aswellas the interface phonon modes. The resultsdifferqualitatively fromwhat 
can be found in the literature, demonstrating the imporlance of interface modes as well as 
the confinement 01 LO modes. 

1. Introduction 

There have been extensive investigations in recent years on the electronic properties in 
heterostructures and superlattices of polar crystals. In particular, the importance of the 
interaction between electrons and the polarization field of longitudinal optical (LO) 
phonons has been well recognized as it strongly modifies the transport and optical 
properties of such microstructures of reduced dimensionality. In dealing with the elec- 
tron-phonon interaction in heterostructures, however, most of the researchers have 
assumed the Frolich Hamiltonian for a confined electron interacting with bulk phonons. 

The polaronic states in a slab of polar crystals have recently been calculated (Liang 
etal 1986) with both surface optical (SO) and LO phonons included. It is shown that the 
energy correction due to surface phonons can be very significant provided that the 
thickness of the slab is sufficiently small. In practice, however, measurements of quasi- 
two-dimensional polarons can only be made in quantum wells or superlattices which 
differ from an isolated slab by the presence of interfaces. The optical phonon modes in 
these structures are expected to be qualitatively different from those in a slab (Lassnig 
1984, Sood etal 1985). As a matter of fact, optical phonon modes and their interactions 
with an electron in a single heterostructure (Wendler 1985) and semiconductor double 
heterostructure (DHS) (Lin er ai 1990a, b, Chen et a1 1990, Mori and Ando 1089) have 
been reported recently. In the case of a GaAs/AlGaAs DHS, it is found that near the 
centre of the first Brillouin zone, the interface phonon with longitudinal polarization in 
factvibratesat abulk~ofrequencyandviceversa(Linetal1990a). Theinterfacephonon 
is also found (Lin el al 1990b, 1991) to be responsible for the pinning phenomenon 
observedin the transition-energy measurementsof a magnetopolaron bound to a hydro- 
genic impurity in quantum wells (Changer al1988). Furthermore, significant effects of 
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Figure I. Geometry of the DHS composed of 
materials 1 and 2. 

interface modes on the polaron mobility and magnetopolaron resonance have been 
obtained in theoretical calculations (Mori and Ando 1989). 

The surface phonon contribution to polaron effects in a slab on the top of a substrate 
has already been considered (Degani and Hipolito 1988). We calculate in this paper 
the ground-state energy and effective mass for a polaron confined in a DHS with the 
interaction Hamiltonian derived previously (Lin et a1 1990b). Both the binding energy 
andeffective massarecalculatedasfunctionsofthe wellwidthd. Becauseof the presence 
of interface phonons, the variation of these quantities with dis shown to be qualitatively 
different from that found in the literature. The polaron binding energy starts with the 
bulk value of the side material when d = 0, increases rapidly to a maximumasdincreases, 
drops back to a minimum, and then increases slowly to the limit of the bulk value of the 
central layer asdincreasesindefinitely. Theeffective mass, on theother hand, decreases 
slightly at first and then increases with increasing d. 

After the total Hamiltonian is written down, the binding energy and effective mass 
of the polaron confined in the GaAs well of a GaAs/AlAs DHS are calculated. We then 
discuss our results and present conclusions. 

2. The Hamiltonian 

Consider a DHS of two different polar crystals as shown in figure 1. The central layer is 
labelled 1 and the side material is labelled 2. We introduce, for convenience, the 
two-dimensional vectors K and p such that k = ( K ,  4) and r = (p, z) for the phonon 
momentum and electron position. In the effective mass approximation our problem is 
to solve the electron-phonon interaction in a square well of width d. Thus the total 
Hamiltonian may be written as 

N = He -k H,, + HeQh. (1) 
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The first term describes an electron in a finite square well and is given by 

where me stands for the electron band mass. For simplicity, we assume throughout this 
paper the same m, in both materials 1 and 2. Different band masses merely complicate 
thecalculation, butnoqualitativechangeofresultsisexpected (GreeneandBajaj 1985). 
The second term in (1) is the free-phonon Hamiltonian which includes the travelling 
interface modes with wave vector K in the xy plane and the confined modes with wave 
vector q in the z direction. As has been discussed in detail previously (Chen et 01 1990), 
the confined modes in the central layer are quantized with discrete allowed values of the 
wave vector, q = m.z/d, but remain continuous in the side layers. Thus, 

H~~ = X hwLV [ u ~ ( K ) ~ ~ ( K )  + 44 
q . r , v  

+ X { h w , ( ~ ) [ a ~ ~ ( ~ ) a , ( ~ )  + 61 + ~ ~ W ~ , ( K ) [ ~ ; ( K ) ~ ~ U ( K )  + $1) (3) 
K.j  

where wLv is the frequency of the bulk LO phonon in material U (U = 1,2) and os, and 
oq are the symmetric and antisymmetric interface phonon frequencies, respectively. 
The indexj = 1,2labels the two branchesof these modes. a’anda are the corresponding 
phonon creation and annihilation operators. While wLv are constant, the interface 
modes are dispersive and are given by (Chen eta1 1990) 

= [E,z(W& + w:) + &I(@& + @:I) coth(~d/2) * { E $ ~ ( w &  - w:)’ 

+ &(CO& - &)* COthZ(~d/2) + 2Em~Em2[(W& + W L ) ( W &  + W ~ I )  

- ~(w&w:I + w:wil) coth(~d/2)]}~’*l~’* 

x {2[ee2 + e=, coth(~d/2)])-”~ (44 
wsj = [c=(o& + w t )  + E , ~ ( w &  + w t l )  tanh(rtdl2) * { E ~ ~ ( w $  - &)* 

+ &(w& - wf1)2 tanh*(Kd/d) + ~ E , ~ E , ~ [ ( W + ~  + U&)(& + W E , )  
- 2(o&w:l + w:lwtz)] tanh(~d/2))”*]”’ 

X {2[€=z + E-1 tanh(Kd/2)]}-”* (4b) 

The last term in (1) stands for the electron-phonon interaction, which can be written 
where j = 1 (2) when one takes the + (-)sign in the second term. 

as 

H-ph = K-LO + Hc-1~. (5) 

The confined LO modes have different frequencies on the adjacent layers. Hence HeLo 
can be written as 
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l B m ( ~ ) 1 2  = ( l / A d )  4zeZfiwL,/[KZ + ( m n / d ) 2 ] ( l / ~ , ,  - (66) 

for IzI < d/2. where the wave vector q = mn/d is quantized and 

H~~~ = - 2 2 e"'PB,(K) sin(qlz1- qd/2)[a,(~) + u : ( - K ) ]  

~ B , ( K ) / ~  = (1/AD)4neZfiw13/(~* + qz)(l/E,Z - 

(7a) 

(7b)  

I *>o 

for z > d/2, where q is in the continuum and the thickness D -P m is assumed at the end 
of the calculation. In (66) and (7b), A stands for the interface area and E,, and 
denote the optic and dielectric constants of material Y. The interaction of the electron 
with interface modes is given by (Lin el a1 1990b). 

= - e","-"I.I-d'z){B,(K)[h~,l(K) + a ; , J - K ) ]  
' . I  

- W(z)B&)[&,l(K) + h&(-K)l} for Iz( > d / 2  (84  

ff-1~ = - elY."{B,(K) COSh(Kz)/COSh(Kd/2)[hs,,(K) + h l , l ( - K ) ]  
W.1 

- Bq(l() [sinh(~z)/sinh(~d/2)] [ h . , l ( ~ )  + d & ( - ~ ) ] }  (86) 

for lzl < d/2 

IBy(K)I2 = ( m Z / A K )  h w q ( ~ ) / [ E I  tanh(~d/2) + E l ]  ( 9 4  

(96) lB,(~)1* = (nez/AK) ~ w J K ) / [ E ,  coth(rtdl2) + E 2 ]  

where we have defined the function sgn(z) = 1 for z > 0 and - 1 for z < 0. The function 
EJw) is defined by 

l / r v ( w )  = 1/[E,(w) - Eov]  - I / [ E , ( W )  - E=,] 

& , ( U )  = E,,(w:, - 02) / (w: .  - w2). 

(10) 

with the dielectric function of materials, v ,  given by 

( 1 1 )  

3. Polaron ground-state energy 

We now proceed to calculate the polaron binding energy by treating the interaction 
Hamiltonian, H+,, as a perturbation on the eigenstates of the free Hamiltonian 
He + Hph. The unperturbed ground state wave function is taken to be 

1 
I V O )  = Ik#, 0; n,,& = =e*l"Pf(z) I"..& (12) 

where use has been made of the fact that electron states are characterized by a plane 
wave 4 in the xy-plane and the ground state 0 in the z direction. The electron wave 
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vectorisdelinedask, = (k,, kx) and the electronground-state wave functionin aquantum 
well is given by 

The wave numbers k,  and k: are related to the electron subband energy El by 

with El determined by the transcendental equation 
k, = V'- k: = V'Zm,(V, - E,)/h* (14) 

E ,  = V ,  c o s z [ ( d / 2 ) V ' w ]  1 = 1,2, .  . .. (15) 
The normalization constant, C, is given by 

C = %'2k:/(k:d + 2). 
The phonon state is specified by n phonons with wave vector k = ( K ,  q )  and index 

labelling the phonon mode, which may be one of the interface or confined LO modes. 
The unperturbed energy of the electron in the ground state (12) can be written as 

In the weak-coupling approximation, the corrections due to the electron-phonon inter- 
action can be calculated by standard perturbation theory as 

where we have assumed that transitions to or from a state with more than one phonon 
arenegligible.Thisistrueaslongasthephononenergyhw, kBT,andthetemperature 
does not have to be absolute zero. For simplicity, matrix elements corresponding to 
interband transitions are ignored in our calculation. This is a good approximation, in 
general, except for the two limiting cases d+ 0 and d - +  a, where the whole subband 
spectrum including the continuum should be included because the subband energy 
spacings become arbitrarily small in these limits. We should emphasize here that leaving 
out any part of the electron energy spectrum would then not guarantee the correct 
limiting values. With these simplifications in mind, we can rewrite (18) as 

where AE,  is the correction due to the confined LO modesin the central layer, 
~ t .  - EL:) = AEl + AEz + AE3 (19) 

AEz is caused by the confined LO modes in the side layers, 

and AE3 is due to the interface modes, 
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It is noted that the second term in (2Oc) vanishes identically because the antisymmetric 
phonon wave function is an odd function while the electron ground state is an even 
function. With the Hamiltonian operators given by (6)-(9, and the wave function by 
(12), we find, after integration over the phonon momentum, that 

D L Lin et ai 

The parameters CY and yare  related to the Frdhlich-type coupling constants involving 
the particular phonon modes indicated by the subscripts. Explicitly, the a's are given by 

and we have defined the function 

Q - ' ( K )  = Zcosz(k,d/2)/(x + UC:) + tanh(xd/Z)/x + 2k, sin(k,d)/(KZ + 4k:) 

+ ~/(d + 4k:)  tanh(lrdl2) cosh(k,d). (2) 

Kpl' and Kid measure the polaron size due to the LO phonon in materials 1 and 2, 
respectively, while am (CY=) denotes the usual Lo-phonon-electron coupling constant 
of Frdlich type in material 1 (2). They are given by 

.. . . . .. .- 

Kpl = V2mewLl/h (244 
~. 

Kp2 = d2m,wu/fi (24b) 

~ F I  = ( e 2 K p i / 2 f i ~ ~ l ) ( b ' ~ = 1  - ~ / E O I )  (=a) 

= (e2Kpz/2fi%z)(1/Em - 1 / E o 2 ) .  (25b) 

Although the corresponding quantifies due to the interface phonon are not physically 
meaningful, they are nevertheless defined mathematically for convenience. Thus, we 
have 

.~ 
Kpl(K) = W C )  

aFrj(~) = [ e Z K H ( r c ) / % ~ , ( ~ ) ]  1 / [ ~ ~  tanh(d/2) + C2]. (26) 
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It is emphasized that both Kpy and aFli are not constant but depend on K. Similarly, the 
y's are given by 

4% d 2  
Kp,d ''I4 (-1 + [ 1 - ( 2 k , d / m ~ ) ~ ]  

m=1.3.. .. 

t [ dt [t + (mn/Kptd)2] (r  + 1)3 
X 

In calculating the energy corrections ( 2 1 ) ,  we have expanded the denominators in (20) 
up to the second order in kll and replaced the summations of K and q by the integrals, 

Substituting (21) into (19) we find 

E kc - &i:) = -Cu,,fiw,, - aL2hWL2 - los dK %(K)hW&) 

- ( h 2 k i / 2 m e ) ( y ~ i +  YU + YIN). (28) 

Combining (28) and the unperturbed energy (17), we obtain immediately the ground- 
state energy of the interacting electron-phonon system as 

where 

m," = 4 1  - YLI - YU - YIN) 

is the polaron effective mass and 

4. Results and discussion 

Equations (30) and (31) are now employed to compute the effective mass and binding 
energy of a polaron in the GaAs quantum well of a GaAs/AIAsdouble heterostructure. 



4652 D L Lin et a1 

Tnble1.Parametersusedin theGaAsfAlAso~s(m,~sthereslmassofafreeelectron) 

mJmo ~ ( 0 )  E(-) oL (cm-') ~ ( c m - ' )  

GaAs 0.067 12.5 10.06 297 273 
A h  - 10.6 8.16 403.7 361.7 

4t 

Figure 2. Polaron effective mass (full curve) as 
a function of the well width. The dotted curve 
represents the contribution from confined LO 
modes of phonons, and the broken curve rep- 
resents the contributions from the interface 
modes. 

Figure 3. Polaron binding energy as a function of 
the well width. The dotted and broken E w e s  
representthemntributionsfrommn6ned~o and 
interface modes. respectively. 

The parameters used in our calculation are listed in table 1. The results are plotted as 
functions of the well width, d ,  in figures 2 and 3. In each case, contributions from the 
confined LO modes and interface modes are also shown by the dotted and broken curves, 
respectively. 

Let us first look at the confined Lo-mode contribution. This consists of two parts: 
one is from inside the well and the other from outside. The former starts from zero at 
d = 0 and increases monotonically with increasing d until the limiting value corresponds 
tothat of thebulkGaAs, while thelatterstartswith the bulkvalueofAlAsanddecreases 
with increasing d .  This is, of course, expected because the effect of outside phonons on 
the electron in the well must diminish as the thickness of the central layer increases 
indefinitely. 

The behaviour of the interface-phonon contribution can also be understood easily. 
It starts from zero, peaks quickly at about d - 2.5 A, and then drops with increasing d ,  
The effect of interface phonons essentially vanishes at d 3 MI A. While this is true in the 
present case of a free polaron, it is important to point out that the situation is totally 
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different in the case of a bound polaron under the influence of strong magnetic fields. 
(Chang et a1 1988). In fact, the pinning effect observed in a quantum weU of width d = 
100 8. can be completely accounted for by the interface phonon interaction with an 
electron which is bound to the hydrogenic impurity (Lin eta1 1991). Such difference is 
understandable because the dynamics have been changed by the screened Coulomb 
forceand the strong magneticfield, aswell as theantisymmetricinterface phonons which 
have no contribution to the free polaron. 

When these contributions are combined, it is seen from figures 2 and 3 that both the 
calculated effective mass and binding energy of the polaron yield the correct limits. 
When d- t  0, the DHS becomes a bulk AL4s. As a consequence, the interface phonons 
disappear and the results must reduce to those of a polaron in the bulk AIAs. On the 
other hand, the interface phonon effect vanishes when d+ m but the results reduce to 
those in a bulk GaAs. 

It is perhaps of some interest to explain why the present results differ quaEtativeIy 
from those in the literature. Liang et a1 (1986) have dealt with an isolated slab whose 
surfaces act like rigid walls. Thus the electron wave function is completely confined 
within the slab, and both the bulk LO and surface phonon contributions vanish when the 
slab width approaches zero. A slab with a free surface on one side and an interface on 
the other has beenconsidered by Degani and Hipolito (1988). Unfortunately, an infinite 
square well was assumed in the z direction, making the small width results unreliable. 
More recently, Comas er al(1989) have considered only the bulk ~ophonons interacting 
with the electron in an infinite square well. Therefore, their results are meaningful only 
for wells of sufficiently large width. 
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